博客
关于我
曲线控件类
阅读量:250 次
发布时间:2019-03-01

本文共 531 字,大约阅读时间需要 1 分钟。

如何优化曲线控件类以减少CPU占用并提升绘图效率

在开发曲线控件时,频繁调用GDI+绘图函数可能导致CPU占用过高。为了解决这一问题,可以采取以下优化方法:

  • 分离背景与前景绘制

    将图像分为背景和前景两部分。背景部分可以预先绘制到一个位图中,并存储在内存中。这样在需要显示时,只需复制该位图到目标窗口即可,无需频繁重绘。

  • 使用缓冲位图优化绘图

    在类中创建三个位图对象,分别用于背景、曲线和临时绘制。背景绘制到位图A,曲线绘制到位图B。需要显示时,将位图B合成到位图C,然后复制到窗口上显示。这种方法可以显著减少GDI+函数的调用次数。

  • 接口简化与调用优化

    通过简化接口,减少对绘图函数的频繁调用。例如,在TForm1::TForm1初始化函数中创建曲线绘制对象,并设置其最大值和最小值。随后,在Timer1Timer中添加随机数据并进行绘制操作。

  • 这种方法可以有效减少CPU占用,同时提升绘图效率。具体实现细节如下:

    • 背景绘制:将静态部分绘制到位图A中,存储在内存中备用。
    • 曲线绘制:将动态曲线绘制到位图B中,定期更新。
    • 图像合成:将位图B与位图A合成到位图C,再复制到显示窗口中。

    通过这种方式,减少了对GDI+绘图函数的频繁调用,显著提升了曲线绘制的性能表现。

    转载地址:http://auzx.baihongyu.com/

    你可能感兴趣的文章
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    Numpy闯关100题,我闯了95关,你呢?
    查看>>
    nump模块
    查看>>
    Nutch + solr 这个配合不错哦
    查看>>
    NuttX 构建系统
    查看>>
    NutUI:京东风格的轻量级 Vue 组件库
    查看>>
    NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
    查看>>
    NutzWk 5.1.5 发布,Java 微服务分布式开发框架
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    Nuxt Time 使用指南
    查看>>
    NuxtJS 接口转发详解:Nitro 的用法与注意事项
    查看>>
    NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
    查看>>
    NVelocity标签使用详解
    查看>>